Analysis of an Interface Stabilized Finite Element Method: The Advection-Diffusion-Reaction Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of an Interface Stabilized Finite Element Method: The Advection-Diffusion-Reaction Equation

Analysis of an interface stabilised finite element method for the scalar advectiondiffusion-reaction equation is presented. The method inherits attractive properties of both continuous and discontinuous Galerkin methods, namely the same number of global degrees of freedom as a continuous Galerkin method on a given mesh and the stability properties of discontinuous Galerkin methods for advection...

متن کامل

A stabilized mixed finite element method for the first-order form of advection-diffusion equation

This paper presents a stabilized mixed finite element method for the first-order form of advection–diffusion equation. The new method is based on an additive split of the flux-field into coarseand fine-scale components that systematically lead to coarse and fine-scale variational formulations. Solution of the fine-scale variational problem is mathematically embedded in the coarse-scale problem ...

متن کامل

A multiscale/stabilized finite element method for the advection–diffusion equation

This paper presents a multiscale method that yields a stabilized finite element formulation for the advection–diffusion equation. The multiscale method arises from a decomposition of the scalar field into coarse (resolved) scale and fine (unresolved) scale. The resulting stabilized formulation possesses superior properties like that of the SUPG and the GLS methods. A significant feature of the ...

متن کامل

A stabilized finite element formulation for advection-diffusion using the generalized finite element framework

The following work presents a generalized (extended) finite element formulation for the advection–diffusion equation. Using enrichment functions that represent the exponential nature of the exact solution, smooth numerical solutions are obtained for problems with steep gradients and high Peclet numbers (up to Pe = 25) in one and two-dimensions. As opposed to traditional stabilized methods that ...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2011

ISSN: 0036-1429,1095-7170

DOI: 10.1137/090775464